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Secure messaging

M. Marlinspike and T. Perrin - The double ratchet algorithm, Signal.
[BSJNS17, CCDGS17, DV18, JS18, PR18, ACD19,...]
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Secure Messaging
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In this talk I will...

Overview Continuous Group Key Agreement (CGKA).

Present Tainted TreeKEM, an efficient CGKA protocol.

Discuss efficiency and security
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Continuous Group Key Agreement (CGKA)

Dynamic Membership
• Supports adding/removing members.

Asynchronous

• Untrusted server buffers messages.

Secure

• Forward Secrecy (FS)

• Post-Compromise Security (PCS)
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Forward Secrecy (FS) & Post-Compromise Security (PCS)

Need key update functionality

FS: One-way deterministic enough.

PCS: Needs new randomness.
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n-party CGKA: Bidirectional channels?

Key updating incurs linear communication cost!
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Continuous Group Key Agreement (CGKA)

Dynamic Membership
• Supports Add & Remove of members.

Asynchronous
• Untrusted server buffers messages.

Secure
• Forward Secrecy (FS)

• Post-Compromise Security (PCS)

Key updates with efficient communication cost (logarithmic).

• More frequent updates → better security.
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Message Layer Security (MLS)

IETF Working group

Standard for Secure Group Messaging

Support for groups ≤ 50k users.

Current Proposal: TreeKEM.
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TreeKEM Protocol (MLS)

PKE key-pair per node.

A B C D E F G H

group key

Edges meaning: Knowledge of source ⇒ Knowledge of sink
⇓

User knows secret keys on their path to root.
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TreeKEM: Update (simplified)

Alice updates

A
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TreeKEM: Update (simplified)

Alice updates

chooses and encrypts fresh keys
— Hash derivation

— Encryption

AA
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TreeKEM: Update (simplified)

Alice updates

chooses and encrypts fresh keys

removes old keys

— Hash derivation

— Encryption

A

14 / 33



How to remove?

Alice wants to remove Henry

A B C D E F G H

group key
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How to remove?

Alice needs to rotate keys in Henry ’s path.

A H
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How to remove?

Alice needs to rotate keys in Henry ’s path.

A H

Adversary knowledge

... if Alice corrupted, secret keys outside her path leak!
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How to remove?

If Alice is now removed in the same way...

A H

Adversary knowledge

Adversary still has knowledge of the group key!
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TreeKEM: Remove

Alice removes Henry by:

“blanking”/deleting all nodes along Henry ’s path.

sampling a new group key.

A HA

Blank nodes unblanked as parties update.
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Problem: if many users removed...

AA

⇒ Linear packet size!!

20 / 33



Tainted TreeKEM (TTKEM) (this work)

CGKA variant of TreeKEM without blanking.

More efficient under natural distributions of group operations.

Secure against adaptive adversaries with full network control.

• First adaptive proof for a CGKA/TreeKEM-related protocol with
polynomial loss.
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Tainted TreeKEM (TTKEM): Removal

A H
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Tainted TreeKEM (TTKEM): Removal

Allowed to sample keys outside own path → tainted nodes.

Keep track of tainted nodes.

A H
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TTKEM: Update

Alice updates having tainted nodes

A H
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TTKEM: Update

Tainted nodes need to be re-sampled:

A HA
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Efficiency Trade-offs

Who is affected by it?

• A blank affects anyone whose co-path contains it.

• A taint affects only the tainter, but irrespective of position.

When does a node heal?

• A blank requires user in sub-tree to sample a new key for it.

• A taint also requires all its children to be untainted.
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Efficiency Comparison

TreeKEM recent version uses Commit framework:

Group operations bundled into batches.

Executed at once together with an update.

Compared TTKEM against two variants of TreeKEM:

TKEM: Ignores the update following each Commit.

• More efficient than TreeKEM.

TKEM commit: Each Commit contains a single operation.

• Less efficient than TreeKEM.
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Efficiency Comparison, setting I: No administrators

Adders and Removers sampled uniformly.

Updaters follow either Zipf or uniform distribution.

Updaters follow Zipf dist. Updaters follow uniform dist.
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Efficiency Comparison, setting II: Administrators

Adds/Removes performed by a
small set of administrators

Updaters sampled uniformly.

Average cost per user

Cost for non-administrators Cost for administrators
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Security overview

Adversarial Model:

Controls protocol execution and can corrupt users adaptively.

Corruption window:

• leaks all user state.
• randomness used while corrupted.

”Partially” active:

• Full network control: can force parties into inconsistent states.
• Not allowed to craft messages.

Challenge: Distinguish group key from random.

• Challenge must not be trivial: define safe predicate
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Security overview

Q - # of operations; n - # of users

Theorem (Standard Model)

Enc ε-IND-CPA secure, H ε-pseudorandom

⇒ TTKEM ε · Q log(n)-CGKA-secure.

Theorem (Random Oracle Model)

Enc ε-IND-CPA secure, H random oracle

⇒ TTKEM ε · (Qn)2-CGKA-secure.

Results apply to TreeKEM.
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Summary of our results:

New variant of TreeKEM with tainting instead of blanking.

More efficient under natural distributions.

First adaptive security proof for any CGKA with only polynomial
loss.

Open Problems:

Can we extend security to malicious insiders?

More efficient protocols? New approaches?

Get better comparison using real world access patterns.
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Thanks!
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